26/08/2020

Learning with minibatch Wasserstein : asymptotic and gradient properties

Kilian Fatras, Younès Zine, Rémi Flamary, Remi Gribonval, Nicolas Courty

Keywords:

Abstract: Optimal transport distances are powerful tools to compare probability distributions and have found many applications in machine learning. Yet their algorithmic complexity prevents their direct use on large scale datasets. To overcome this challenge, practitioners compute these distances on minibatches i.e., they average the outcome of several smaller optimal transport problems. We propose in this paper an analysis of this practice, which effects are not well understood so far. We notably argue that it is equivalent to an implicit regularization of the original problem, with appealing properties such as unbiased estimators, gradients and a concentration bound around the expectation, but also with defects such as loss of distance property. Along with this theoretical analysis, we also conduct empirical experiments on gradient flows, GANs or color transfer that highlight the practical interest of this strategy.

 0
 0
 0
 1
This is an embedded video. Talk and the respective paper are published at AISTATS 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers