06/07/2020

Uncertainty-Aware Training of Neural Networks for Selective Medical Image Segmentation

Yukun Ding, Jinglan Liu, Xiaowei Xu, Meiping Huang, Jian Zhuang, Jinjun Xiong, Yiyu Shi

Keywords:

Abstract: State-of-the-art deep learning based methods have achieved remarkable performance on medical image segmentation. Their applications in the clinical setting are, however, limited due to the lack of trustworthiness and reliability. Selective image segmentation has been proposed to address this issue by letting a DNN model process instances with high confidence while referring difficult ones with high uncertainty to experienced radiologists. As such, the model performance is only affected by the predictions on the high confidence subset rather than the whole dataset. Existing selective segmentation methods, however, ignore this unique property of selective segmentation and train their DNN models by optimizing accuracy on the entire dataset. Motivated by such a discrepancy, we present a novel method in this paper that considers such uncertainty in the training process to maximize the accuracy on the confident subset rather than the accuracy on the whole dataset. Experimental results using the whole heart and great vessel segmentation and gland segmentation show that such a training scheme can significantly improve the performance of selective segmentation.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at MIDL 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers