26/10/2020

Dynamic Controllability and (J,K)-Resiliency in Generalized Constraint Networks with Uncertainty

Matteo Zavatteri, Romeo Rizzi, Tiziano Villa

Keywords: Constraint network, GCNU, Dynamic Controllability, (J K)-Resiliency, Resource allocation under uncertainty, high-availability, Online planning, Two-player game, PSPACE-completeness

Abstract: A number of formal models have been proposed to address temporal and resource allocation problems under uncertainty. Such models are typically shipped with an embedded notion of dynamic controllability, enclosing the ability to always make the right decisions, during execution, according to the observed uncontrollable events that always happen. In the business process management community, resource allocation was recently studied to deal with uncontrollable choices, whereas in the security community it was studied to face the uncontrollable availability of resources. The latter is a kind of dynamic controllability known as resiliency where uncontrollable events might also not happen. To the best of our knowledge, approaches handling resiliency on top of dynamic controllability still remain unexplored. To bridge this gap, we propose Generalized Constraint Networks with Uncertainty (GCNUs), a model that we devised to address resource controllability more widely, boosting expressiveness while considering several sources of uncertainty simultaneously. We define dynamic controllability and (J,K)-resiliency of GCNUs. We reason on the structure of these problems, carry out a complexity analysis and provide algorithms to solve them.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICAPS 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers