14/09/2020

Temporal Heterogeneous Interaction Graph Embedding For Next-Item Recommendation

Yugang Ji, Mingyang Yin, Hongxia Yang, Xiangwei Wang, Chuan Shi, Tianrui Jia, Yuan Fang

Keywords: temporal heterogeneous interaction graph, next-item recommendation, short-term demands, long-term habits

Abstract: In the scenario of next-item recommendation, previous methods attempt to model user preferences by capturing the evolution of sequential interactions. However, their sequential expression is often limited, without modeling complex dynamics that short-term demands can often be influenced by long-term habits. Moreover, few of them take into account the heterogeneous types of interaction between users and items. In this paper, we model such complex data as a Temporal Heterogeneous Interaction Graph (THIG) and learn both user and item embeddings on THIGs to address next-item recommendation. The main challenges involve two aspects: the complex dynamics and rich heterogeneity of interactions. We propose THIG Embedding (THIGE) which models the complex dynamics so that evolving short-term demands are guided by long-term historical habits, and leverages the rich heterogeneity to express the latent relevance of different-typed preferences. Extensive experiments on real-world datasets demonstrate that THIGE consistently outperforms the state-of-the-art methods.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ECML PKDD 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers