16/11/2020

We Can Detect Your Bias: Predicting the Political Ideology of News Articles

Ramy Baly, Giovanni Da San Martino, James Glass, Preslav Nakov

Keywords: article-level prediction, adversarial adaptation, pre-trained transformers, leading ideology

Abstract: We explore the task of predicting the leading political ideology or bias of news articles. First, we collect and release a large dataset of 34,737 articles that were manually annotated for political ideology --left, center, or right--, which is well-balanced across both topics and media. We further use a challenging experimental setup where the test examples come from media that were not seen during training, which prevents the model from learning to detect the source of the target news article instead of predicting its political ideology. From a modeling perspective, we propose an adversarial media adaptation, as well as a specially adapted triplet loss. We further add background information about the source, and we show that it is quite helpful for improving article-level prediction. Our experimental results show very sizable improvements over using state-of-the-art pre-trained Transformers in this challenging setup.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at EMNLP 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers