06/12/2021

Exploring the Limits of Out-of-Distribution Detection

Stanislav Fort, Jie Ren, Balaji Lakshminarayanan

Keywords: deep learning, transformers

Abstract: Near out-of-distribution detection (OOD) is a major challenge for deep neural networks. We demonstrate that large-scale pre-trained transformers can significantly improve the state-of-the-art (SOTA) on a range of near OOD tasks across different data modalities. For instance, on CIFAR-100 vs CIFAR-10 OOD detection, we improve the AUROC from 85% (current SOTA) to more than 96% using Vision Transformers pre-trained on ImageNet21k. On a challenging genomics OOD detection benchmark, we improve the AUROC from 66% to 77% using transformer and unsupervised pre-training. To further improve performance, we explore the few-shot outlier exposure setting where a few examples from outlier classes may be available; we show that pre-trained transformers are particularly well-suited for outlier exposure, and that the AUROC of OOD detection on CIFAR-100 vs CIFAR-10 can be improved to 98.7% with just 1 image per OOD class, and 99.46% with 10 images per OOD class. For multi-modal image-text pre-trained transformers such as CLIP, we explore a new way of using just the names of outlier classes as a sole source of information without any accompanying images, and show that this outperforms previous SOTA on standard OOD benchmark tasks.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at NeurIPS 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers