16/11/2020

Generating similes effortlessly like a Pro: A Style Transfer Approach for Simile Generation

Tuhin Chakrabarty, Smaranda Muresan, Nanyun Peng

Keywords: human imagination, simile generation, mapping properties, sequence model

Abstract: Literary tropes, from poetry to stories, are at the crux of human imagination and communication. Figurative language such as a simile go beyond plain expressions to give readers new insights and inspirations. In this paper, we tackle the problem of simile generation. Generating a simile requires proper understanding for effective mapping of properties between two concepts. To this end, we first propose a method to automatically construct a parallel corpus by transforming a large number of similes collected from Reddit to their literal counterpart using structured common sense knowledge. We then propose to fine-tune a pre-trained sequence to sequence model, BART (Lewis et al 2019), on the literal-simile pairs to gain generalizability, so that we can generate novel similes given a literal sentence. Experiments show that our approach generates 88% novel similes that do not share properties with the training data. Human evaluation on an independent set of literal statements shows that our model generates similes better than two literary experts 37% of the time when compared pairwise. We also show how replacing literal sentences with similes from our best model in machine-generated stories improves evocativeness and leads to better acceptance by human judges.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at EMNLP 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers