16/11/2020

End-to-End Slot Alignment and Recognition for Cross-Lingual NLU

Weijia Xu, Batool Haider, Saab Mansour

Keywords: natural understanding, natural, nlu, goal-oriented systems

Abstract: Natural language understanding (NLU) in the context of goal-oriented dialog systems typically includes intent classification and slot labeling tasks. Existing methods to expand an NLU system to new languages use machine translation with slot label projection from source to the translated utterances, and thus are sensitive to projection errors. In this work, we propose a novel end-to-end model that learns to align and predict target slot labels jointly for cross-lingual transfer. We introduce MultiATIS++, a new multilingual NLU corpus that extends the Multilingual ATIS corpus to nine languages across four language families, and evaluate our method using the corpus. Results show that our method outperforms a simple label projection method using fast-align on most languages, and achieves competitive performance to the more complex, state-of-the-art projection method with only half of the training time. We release our MultiATIS++ corpus to the community to continue future research on cross-lingual NLU.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at EMNLP 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers