02/02/2021

C2C-GenDA: Cluster-to-Cluster Generation for Data Augmentation of Slot Filling

Yutai Hou, Sanyuan Chen, Wanxiang Che, Cheng Chen, Ting Liu

Keywords:

Abstract: Slot filling, a fundamental module of spoken language understanding, often suffers from insufficient quantity and diversity of training data. To remedy this, we propose a novel Cluster-to-Cluster generation framework for Data Augmentation (DA), named C2C-GenDA. It enlarges the training set by reconstructing existing utterances into alternative expressions while keeping semantic. Different from previous DA works that reconstruct utterances one by one independently, C2C-GenDA jointly encodes multiple existing utterances of the same semantics and simultaneously decodes multiple unseen expressions. Jointly generating multiple new utterances allows to consider the relations between generated instances and encourages diversity. Besides, encoding multiple existing utterances endows C2C with a wider view of existing expressions, helping to reduce generation that duplicates existing data. Experiments on ATIS and Snips datasets show that instances augmented by C2C-GenDA improve slot filling by 7.99 (11.9%↑) and 5.76 (13.6%↑) F-scores respectively, when there are only hundreds of training utterances. Code: https://github.com/Sanyuan-Chen/C2C-DA.

The video of this talk cannot be embedded. You can watch it here:
https://slideslive.com/38949311
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AAAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers