Abstract:
Directly translating from speech to text using an end-to-end approach is still challenging for many language pairs due to insufficient data. Although pretraining the encoder parameters using the Automatic Speech Recognition (ASR) task improves the results in low resource settings, attempting to use pretrained parameters from the Neural Machine Translation (NMT) task has been largely unsuccessful in previous works. In this paper, we will show that by using an adversarial regularizer, we can bring the encoder representations of the ASR and NMT tasks closer even though they are in different modalities, and how this helps us effectively use a pretrained NMT decoder for speech translation.