19/04/2021

Better neural machine translation by extracting linguistic information from BERT

Hassan S. Shavarani, Anoop Sarkar

Keywords:

Abstract: Adding linguistic information (syntax or semantics) to neural machine translation (NMT) have mostly focused on using point estimates from pre-trained models. Directly using the capacity of massive pre-trained contextual word embedding models such as BERT(Devlin et al., 2019) has been marginally useful in NMT because effective fine-tuning is difficult to obtain for NMT without making training brittle and unreliable. We augment NMT by extracting dense fine-tuned vector-based linguistic information from BERT instead of using point estimates. Experimental results show that our method of incorporating linguistic information helps NMT to generalize better in a variety of training contexts and is no more difficult to train than conventional Transformer-based NMT.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at EACL 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers