06/12/2020

Neural Message Passing for Multi-Relational Ordered and Recursive Hypergraphs

Naganand Yadati

Keywords:

Abstract: Message passing neural network (MPNN) has recently emerged as a successful framework by achieving state-of-the-art performances on many graph-based learning tasks. MPNN has also recently been extended to multi-relational graphs (each edge is labelled), and hypergraphs (each edge can connect any number of vertices). However, in real-world datasets involving text and knowledge, relationships are much more complex in which hyperedges can be multi-relational, recursive, and ordered. Such structures present several unique challenges because it is not clear how to adapt MPNN to variable-sized hyperedges in them. In this work, we first unify exisiting MPNNs on different structures into G-MPNN (Generalised MPNN) framework. Motivated by real-world datasets, we then propose a novel extension of the framework, MPNN-R (MPNN-Recursive) to handle recursively-structured data. Experimental results demonstrate the effectiveness of proposed G-MPNN and MPNN-R.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at NeurIPS 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers