06/12/2020

Improved Techniques for Training Score-Based Generative Models

Yang Song, Stefano Ermon

Keywords:

Abstract: Score-based generative models can produce high quality image samples comparable to GANs, without requiring adversarial optimization. However, existing training procedures are limited to images of low resolution (typically below 32 x 32), and can be unstable under some settings. We provide a new theoretical analysis of learning and sampling from score models in high dimensional spaces, explaining existing failure modes and motivating new solutions that generalize across datasets. To enhance stability, we also propose to maintain an exponential moving average of model weights. With these improvements, we can effortlessly scale score-based generative models to images with unprecedented resolutions ranging from 64 x 64 to 256 x 256. Our score-based models can generate high-fidelity samples that rival best-in-class GANs on various image datasets, including CelebA, FFHQ, and multiple LSUN categories.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at NeurIPS 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers