06/12/2020

Efficient Low Rank Gaussian Variational Inference for Neural Networks

Marcin Tomczak, Siddharth Swaroop, Richard Turner

Keywords: Probabilistic Methods -> Latent Variable Models, Probabilistic Methods -> Topic Models

Abstract: Bayesian neural networks are enjoying a renaissance driven in part by recent advances in variational inference (VI). The most common form of VI employs a fully factorized or mean-field distribution, but this is known to suffer from several pathologies, especially as we expect posterior distributions with highly correlated parameters. Current algorithms that capture these correlations with a Gaussian approximating family are difficult to scale to large models due to computational costs and high variance of gradient updates. By using a new form of the reparametrization trick, we derive a computationally efficient algorithm for performing VI with a Gaussian family with a low-rank plus diagonal covariance structure. We scale to deep feed-forward and convolutional architectures. We find that adding low-rank terms to parametrized diagonal covariance does not improve predictive performance except on small networks, but low-rank terms added to a constant diagonal covariance improves performance on small and large-scale network architectures.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at NeurIPS 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers