12/07/2020

Dissecting Non-Vacuous Generalization Bounds based on the Mean-Field Approximation

Konstantinos Pitas

Keywords: Deep Learning - Theory

Abstract: Explaining how overparametrized neural networks simultaneously achieve low risk and zero empirical risk on benchmark datasets is an open problem. PAC-Bayes bounds optimized using variational inference (VI) have been recently proposed as a promising direction in obtaining non-vacuous bounds. We show empirically that this approach gives negligible gains when modelling the posterior as a Gaussian with diagonal covariance---known as the mean-field approximation. We investigate common explanations, such as the failure of VI due to problems in optimization or choosing a suboptimal prior. Our results suggest that investigating richer posteriors is the most promising direction forward.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICML 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers