06/12/2020

Why Do Deep Residual Networks Generalize Better than Deep Feedforward Networks? --- A Neural Tangent Kernel Perspective

Kaixuan Huang, Yuqing Wang, Molei Tao, Tuo Zhao

Keywords: Algorithms -> Uncertainty Estimation; Theory -> Frequentist Statistics; Theory -> Large Deviations and Asymptotic Analysis; The, Algorithms -> Kernel Methods

Abstract: Deep residual networks (ResNets) have demonstrated better generalization performance than deep feedforward networks (FFNets). However, the theory behind such a phenomenon is still largely unknown. This paper studies this fundamental problem in deep learning from a so-called ``neural tangent kernel'' perspective. Specifically, we first show that under proper conditions, as the width goes to infinity, training deep ResNets can be viewed as learning reproducing kernel functions with some kernel function. We then compare the kernel of deep ResNets with that of deep FFNets and discover that the class of functions induced by the kernel of FFNets is asymptotically not learnable, as the depth goes to infinity. In contrast, the class of functions induced by the kernel of ResNets does not exhibit such degeneracy. Our discovery partially justifies the advantages of deep ResNets over deep FFNets in generalization abilities. Numerical results are provided to support our claim.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at NeurIPS 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers

 14:30