06/12/2020

Private Identity Testing for High-Dimensional Distributions

Clément L Canonne, Gautam Kamath, Audra McMillan, Jonathan Ullman, Lydia Zakynthinou

Keywords:

Abstract: In this work we present novel differentially private identity (goodness-of-fit) testers for natural and widely studied classes of multivariate product distributions: Gaussians in R^d with known covariance and product distributions over {\pm 1}^d. Our testers have improved sample complexity compared to those derived from previous techniques, and are the first testers whose sample complexity matches the order-optimal minimax sample complexity of O(d^1/2/alpha^2) in many parameter regimes. We construct two types of testers, exhibiting tradeoffs between sample complexity and computational complexity. Finally, we provide a two-way reduction between testing a subclass of multivariate product distributions and testing univariate distributions, and thereby obtain upper and lower bounds for testing this subclass of product distributions.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at NeurIPS 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers