06/12/2020

Auditing Differentially Private Machine Learning: How Private is Private SGD?

Matthew Jagielski, Jonathan Ullman, Alina Oprea

Keywords:

Abstract: We investigate whether Differentially Private SGD offers better privacy in practice than what is guaranteed by its state-of-the-art analysis. We do so via novel data poisoning attacks, which we show correspond to realistic privacy attacks. While previous work (Ma et al., arXiv 2019) proposed this connection between differential privacy and data poisoning as a defense against data poisoning, our use as a tool for understanding the privacy of a specific mechanism is new. More generally, our work takes a quantitative, empirical approach to understanding the privacy afforded by specific implementations of differentially private algorithms that we believe has the potential to complement and influence analytical work on differential privacy.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at NeurIPS 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers