16/11/2020

Learning RGB-D Feature Embeddings for Unseen Object Instance Segmentation

Yu Xiang, Christopher Xie, Arsalan Mousavian, Dieter Fox

Keywords:

Abstract: Segmenting unseen objects in cluttered scenes is an important skill that robots need to acquire in order to perform tasks in new environments. In this work, we propose a new method for unseen object instance segmentation by learning RGB-D feature embeddings from synthetic data. A metric learning loss function is utilized to learn to produce pixel-wise feature embeddings such that pixels from the same object are close to each other and pixels from different objects are separated in the embedding space. With the learned feature embeddings, a mean shift clustering algorithm can be applied to discover and segment unseen objects. We further improve the segmentation accuracy with a new two-stage clustering algorithm. Our method demonstrates that non-photorealistic synthetic RGB and depth images can be used to learn feature embeddings that transfer well to real-world images for unseen object instance segmentation.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at CoRL 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers