14/06/2020

Meshlet Priors for 3D Mesh Reconstruction

Abhishek Badki, Orazio Gallo, Jan Kautz, Pradeep Sen

Keywords: mesh reconstruction, local shape priors, 3d representation learning, point cloud, class-agnostic, canonical pose

Abstract: Estimating a mesh from an unordered set of sparse, noisy 3D points is a challenging problem that requires to carefully select priors. Existing hand-crafted priors, such as smoothness regularizers, impose an undesirable trade-off between attenuating noise and preserving local detail. Recent deep-learning approaches produce impressive results by learning priors directly from the data. However, the priors are learned at the object level, which makes these algorithms class-specific, and even sensitive to the pose of the object. We introduce meshlets, small patches of mesh that we use to learn local shape priors. Meshlets act as a dictionary of local features and thus allow to use learned priors to reconstruct object meshes in any pose and from unseen classes, even when the noise is large and the samples sparse.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at CVPR 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers