16/11/2020

Learning to Walk in the Real World with Minimal Human Effort

Sehoon Ha, Peng Xu, Zhenyu Tan, Sergey Levine, Jie Tan

Keywords:

Abstract: Reliable and stable locomotion has been one of the most fundamental challenges for legged robots. Deep reinforcement learning (deep RL) has emerged as a promising method for developing such control policies autonomously. In this paper, we develop a system for learning legged locomotion policies with deep RL in the real world with minimal human effort. The key difficulties for on-robot learning systems are automatic data collection and safety. We overcome these two challenges by developing a multi-task learning procedure and a safety-constrained RL framework. We tested our system on the task of learning to walk on three different terrains: flat ground, a soft mattress, and a doormat with crevices. Our system can automatically and efficiently learn locomotion skills on a Minitaur robot with little human intervention.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at CoRL 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers