26/08/2020

Local Differential Privacy for Sampling

Hisham Husain, Borja Balle, Zac Cranko, Richard Nock

Keywords:

Abstract: Differential privacy (DP) is a leading privacy protection focused by design on individual privacy. In the local model of DP, strong privacy is achieved by privatizing each user's individual data before sending it to an untrusted aggregator for analysis. While in recent years local DP has been adopted for practical deployments, most research in this area focuses on problems where each individual holds a single data record. In many problems of practical interest this assumption is unrealistic since nowadays most user-owned devices collect large quantities of data (e.g.\ pictures, text messages, time series). We propose to model this scenario by assuming each individual holds a distribution over the space of data records, and develop novel local DP methods to sample privately from these distributions. Our main contribution is a boosting-based density estimation algorithm for learning samplers that generate synthetic data while protecting the underlying distribution of each user with local DP. We give approximation guarantees quantifying how well these samplers approximate the true distribution. Experimental results against DP kernel density estimation and DP GANs displays the quality of our results.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AISTATS 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers