26/08/2020

Calibrated Prediction with Covariate Shift via Unsupervised Domain Adaptation

Sangdon Park, Osbert Bastani, James Weimer, Insup Lee

Keywords:

Abstract: Reliable uncertainty estimates are an important tool for helping autonomous agents or human decision makers understand and lever-age predictive models. However, existing approaches to estimating uncertainty largely ignore the possibility of covariate shift—i.e.,where the real-world data distribution may differ from the training distribution. As a consequence, existing algorithms can overestimate certainty, possibly yielding a false sense of confidence in the predictive model. We pro-pose an algorithm for calibrating predictions that accounts for the possibility of covariate shift, given labeled examples from the train-ing distribution and unlabeled examples from the real-world distribution. Our algorithm uses importance weighting to correct for the shift from the training to the real-world distribution. However, importance weighting relies on the training and real-world distributions to be sufficiently close. Building on ideas from domain adaptation, we additionally learn a feature map that tries to equalize these two distributions. In an empirical evaluation, we show that our proposed approach outperforms existing approaches to calibrated prediction when there is covariate shift.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AISTATS 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers