26/08/2020

On Random Subsampling of Gaussian Process Regression: A Graphon-Based Analysis

Kohei Hayashi, Masaaki Imaizumi, Yuichi Yoshida

Keywords:

Abstract: In this paper, we study random subsampling of Gaussian process regression, one of the simplest approximation baselines, from a theoretical perspective. Although subsampling discards a large part of training data, we show provable guarantees on the accuracy of the predictive mean/variance and its generalization ability. For analysis, we consider embedding kernel matrices into graphons, which encapsulate the difference of the sample size and enables us to evaluate the approximation and generalization errors in a unified manner. The experimental results show that the subsampling approximation achieves a better trade-off regarding accuracy and runtime than the \nystrom and random Fourier expansion methods.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AISTATS 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers