26/08/2020

Causal Mosaic: Cause-Effect Inference via Nonlinear ICA and Ensemble Method

Pengzhou Wu, Kenji Fukumizu

Keywords:

Abstract: We address the problem of distinguishing cause from effect in bivariate setting. Based on recent developments in nonlinear independent component analysis (ICA), we train general nonlinear causal models that are implemented by neural networks and allow non-additive noise. Further, we build an ensemble framework, namely Causal Mosaic, which models a causal pair by a mixture of nonlinear models. We compare this method with other recent methods on artificial and real world benchmark datasets, and our method shows state-of-the-art performance.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AISTATS 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers