14/06/2020

Neural Implicit Embedding for Point Cloud Analysis

Kent Fujiwara, Taiichi Hashimoto

Keywords: point cloud, implicit representation, distance field, extreme learning machine, coordinate invariance

Abstract: We present a novel representation for point clouds that encapsulates the local characteristics of the underlying structure. The key idea is to embed an implicit representation of the point cloud, namely the distance field, into neural networks. One neural network is used to embed a portion of the distance field around a point. The resulting network weights are concatenated to be used as a representation of the corresponding point cloud instance. To enable comparison among the weights, Extreme Learning Machine (ELM) is employed as the embedding network. Invariance to scale and coordinate change can be achieved by introducing a scale commutative activation layer to the ELM, and aligning the distance field into a canonical pose. Experimental results using our representation demonstrate that our proposal is capable of similar or better classification and segmentation performance compared to the state-of-the-art point-based methods, while requiring less time for training.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at CVPR 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers