22/06/2020

Using BibTeX to Automatically Generate Labeled Data for Citation Field Extraction

Dung Thai, Zhiyang Xu, Nicholas Monath, Boris Veytsman, Andrew McCallum

Keywords: sequence labeling, information extraction, auto-generated dataset

Abstract: Accurate parsing of citation reference strings is crucial to automatically construct scholarly databases such as Google Scholar or Semantic Scholar. Citation field extraction (CFE) is precisely this task---given a reference label which tokens refer to the authors, venue, title, editor, journal, pages, etc. Most methods for CFE are supervised and rely on training from labeled datasets that are quite small compared to the great variety of reference formats. BibTeX, the widely used reference management tool, provides a natural method to automatically generate and label training data for CFE. In this paper, we describe a technique for using BibTeX to generate, automatically, a large-scale 41M labeled strings), labeled dataset, that is four orders of magnitude larger than the current largest CFE dataset, namely the UMass Citation Field Extraction dataset [Anzaroot and McCallum, 2013]. We experimentally demonstrate how our dataset can be used to improve the performance of the UMass CFE using a RoBERTa-based [Liu et al., 2019] model. In comparison to previous SoTA, we achieve a 24.48% relative error reduction, achieving span level F1-scores of 96.3%.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AKBC 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers