04/07/2020

Multidirectional Associative Optimization of Function-Specific Word Representations

Daniela Gerz, Ivan Vulić, Marek Rei, Roi Reichart, Anna Korhonen

Keywords: estimating preference, Multidirectional Representations, neural framework, task-independent model

Abstract: We present a neural framework for learning associations between interrelated groups of words such as the ones found in Subject-Verb-Object (SVO) structures. Our model induces a joint function-specific word vector space, where vectors of e.g. plausible SVO compositions lie close together. The model retains information about word group membership even in the joint space, and can thereby effectively be applied to a number of tasks reasoning over the SVO structure. We show the robustness and versatility of the proposed framework by reporting state-of-the-art results on the tasks of estimating selectional preference and event similarity. The results indicate that the combinations of representations learned with our task-independent model outperform task-specific architectures from prior work, while reducing the number of parameters by up to 95%.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ACL 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers