12/07/2020

Towards Adaptive Residual Network Training: A Neural-ODE Perspective

chengyu dong, Liyuan Liu, Zichao Li, Jingbo Shang

Keywords: Deep Learning - Algorithms

Abstract: Serving as a crucial factor, the depth of residual networks balances model capacity, performance, and training efficiency. However, depth has been long fixed as a hyper-parameter and needs laborious tuning, due to the lack of theories describing its dynamics. Here, we conduct theoretical analysis on network depth and introduce adaptive residual network training, which gradually increases model depth during training. Specifically, from an ordinary differential equation perspective, we describe the effect of depth growth with embedded errors, characterize the impact of model depth with truncation errors, and derive bounds for them. Illuminated by these derivations, we propose an adaptive training algorithm for residual networks, LipGrow, which automatically increases network depth and accelerates model training. In our experiments, it achieves better or comparable performance while reducing ~50% of training time.

 0
 1
 1
 1
This is an embedded video. Talk and the respective paper are published at ICML 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers