12/07/2020

Robust Multi-Agent Decision-Making with Heavy-Tailed Payoffs

Abhimanyu Dubey, Alex `Sandy' Pentland

Keywords: Planning, Control, and Multiagent Learning

Abstract: We study the heavy-tailed stochastic bandit problem in the cooperative multiagent setting, where a group of agents interact with a common bandit problem, while communicating on a network with delays. Existing algorithms for the stochastic bandit in this setting utilize confidence intervals arising from an averaging-based communication protocol known as~\textit{running consensus}, that does not lend itself to robust estimation for heavy-tailed settings. We propose \textsc{MP-UCB}, a decentralized multi-agent algorithm for the cooperative stochastic bandit that incorporates robust estimation with a message-passing protocol. We prove optimal regret bounds for \textsc{MP-UCB} for several problem settings, and also demonstrate its superiority to existing methods. Furthermore, we establish the first lower bounds for the cooperative bandit problem, in addition to providing efficient algorithms for robust bandit estimation of location.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICML 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers