12/07/2020

Nonparametric Score Estimators

Yuhao Zhou, Jiaxin Shi, Jun Zhu

Keywords: General Machine Learning Techniques

Abstract: Estimating the score, i.e., the gradient of log density function, from a set of samples generated by an unknown distribution is a fundamental task in inference and learning of probabilistic models that involve flexible yet intractable densities. Kernel estimators based on Stein's methods or score matching have shown promise, however their theoretical properties and relationships have not been fully-understood. We provide a unifying view of these estimators under the framework of regularized nonparametric regression. It allows us to analyse existing estimators and construct new ones with desirable properties by choosing different hypothesis spaces and regularizers. A unified convergence analysis is provided for such estimators. Finally, we propose score estimators based on iterative regularization that enjoy computational benefits from curl-free kernels and fast convergence.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICML 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers

 2:28