06/12/2020

Estimating weighted areas under the ROC curve

Andreas Maurer, Massimiliano Pontil

Keywords:

Abstract: Exponential bounds on the estimation error are given for the plug-in estimator of weighted areas under the ROC curve. The bounds hold for single score functions and uniformly over classes of functions, whose complexity can be controlled by Gaussian or Rademacher averages. The results justify learning algorithms which select score functions to maximize the empirical partial area under the curve (pAUC). They also illustrate the use of some recent advances in the theory of nonlinear empirical processes.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at NeurIPS 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers