12/07/2020

Generative Flows with Matrix Exponential

Changyi Xiao, Ligang Liu

Keywords: Deep Learning - Generative Models and Autoencoders

Abstract: Flow-based generative models are a family of generative models which enjoy the properties of tractable exact likelihood and efficient training and sampling. They are composed of a sequence of invertible functions. In this paper, we incorporate matrix exponential into generative flows. Matrix exponential is a map from matrices to invertible matrices, this property is suitable for generative flows. Based on matrix exponential, we propose matrix exponential coupling layers which are a general case of affine coupling layers and a stable version of invertible 1 x 1 convolutions which do not collapse during training. And we modify the networks architecture to make training stable and significantly speed up the training process. Our experiments show that our model achieves great performance on density estimation amongst flow-based models.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICML 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers