26/04/2020

State Alignment-based Imitation Learning

Fangchen Liu, Zhan Ling, Tongzhou Mu, Hao Su

Keywords: Imitation learning, Reinforcement Learning

Abstract: Consider an imitation learning problem that the imitator and the expert have different dynamics models. Most of existing imitation learning methods fail because they focus on the imitation of actions. We propose a novel state alignment-based imitation learning method to train the imitator by following the state sequences in the expert demonstrations as much as possible. The alignment of states comes from both local and global perspectives. We combine them into a reinforcement learning framework by a regularized policy update objective. We show the superiority of our method on standard imitation learning settings as well as the challenging settings in which the expert and the imitator have different dynamics models.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICLR 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers