26/04/2020

Toward Evaluating Robustness of Deep Reinforcement Learning with Continuous Control

Tsui-Wei Weng, Krishnamurthy (Dj) Dvijotham*, Jonathan Uesato*, Kai Xiao*, Sven Gowal*, Robert Stanforth*, Pushmeet Kohli

Keywords: deep learning, reinforcement learning, robustness, adversarial examples

Abstract: Deep reinforcement learning has achieved great success in many previously difficult reinforcement learning tasks, yet recent studies show that deep RL agents are also unavoidably susceptible to adversarial perturbations, similar to deep neural networks in classification tasks. Prior works mostly focus on model-free adversarial attacks and agents with discrete actions. In this work, we study the problem of continuous control agents in deep RL with adversarial attacks and propose the first two-step algorithm based on learned model dynamics. Extensive experiments on various MuJoCo domains (Cartpole, Fish, Walker, Humanoid) demonstrate that our proposed framework is much more effective and efficient than model-free based attacks baselines in degrading agent performance as well as driving agents to unsafe states.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICLR 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers