26/04/2020

Deep probabilistic subsampling for task-adaptive compressed sensing

Iris A.M. Huijben, Bastiaan S. Veeling, Ruud J.G. van Sloun

Keywords:

Abstract: The field of deep learning is commonly concerned with optimizing predictive models using large pre-acquired datasets of densely sampled datapoints or signals. In this work, we demonstrate that the deep learning paradigm can be extended to incorporate a subsampling scheme that is jointly optimized under a desired minimum sample rate. We present Deep Probabilistic Subsampling (DPS), a widely applicable framework for task-adaptive compressed sensing that enables end-to end optimization of an optimal subset of signal samples with a subsequent model that performs a required task. We demonstrate strong performance on reconstruction and classification tasks of a toy dataset, MNIST, and CIFAR10 under stringent subsampling rates in both the pixel and the spatial frequency domain. Due to the task-agnostic nature of the framework, DPS is directly applicable to all real-world domains that benefit from sample rate reduction.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICLR 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers