26/04/2020

Few-shot Text Classification with Distributional Signatures

Yujia Bao, Menghua Wu, Shiyu Chang, Regina Barzilay

Keywords: text classification, meta learning, few shot learning

Abstract: In this paper, we explore meta-learning for few-shot text classification. Meta-learning has shown strong performance in computer vision, where low-level patterns are transferable across learning tasks. However, directly applying this approach to text is challenging--lexical features highly informative for one task may be insignificant for another. Thus, rather than learning solely from words, our model also leverages their distributional signatures, which encode pertinent word occurrence patterns. Our model is trained within a meta-learning framework to map these signatures into attention scores, which are then used to weight the lexical representations of words. We demonstrate that our model consistently outperforms prototypical networks learned on lexical knowledge (Snell et al., 2017) in both few-shot text classification and relation classification by a significant margin across six benchmark datasets (20.0% on average in 1-shot classification).

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICLR 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers