19/04/2021

Few-shot semantic parsing for new predicates

Zhuang Li, Lizhen Qu, Shuo Huang, Gholamreza Haffari

Keywords:

Abstract: In this work, we investigate the problems of semantic parsing in a few-shot learning setting. In this setting, we are provided with k utterance-logical form pairs per new predicate. The state-of-the-art neural semantic parsers achieve less than 25% accuracy on benchmark datasets when k = 1. To tackle this problem, we proposed to i) apply a designated meta-learning method to train the model; ii) regularize attention scores with alignment statistics; iii) apply a smoothing technique in pretraining. As a result, our method consistently outperforms all the baselines in both one and two-shot settings.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at EACL 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers