06/12/2021

Dynamic Bottleneck for Robust Self-Supervised Exploration

Chenjia Bai, Lingxiao Wang, Lei Han, Animesh Garg, Jianye Hao, Peng Liu, Zhaoran Wang

Keywords: reinforcement learning and planning

Abstract: Exploration methods based on pseudo-count of transitions or curiosity of dynamics have achieved promising results in solving reinforcement learning with sparse rewards. However, such methods are usually sensitive to environmental dynamics-irrelevant information, e.g., white-noise. To handle such dynamics-irrelevant information, we propose a Dynamic Bottleneck (DB) model, which attains a dynamics-relevant representation based on the information-bottleneck principle. Based on the DB model, we further propose DB-bonus, which encourages the agent to explore state-action pairs with high information gain. We establish theoretical connections between the proposed DB-bonus, the upper confidence bound (UCB) for linear case, and the visiting count for tabular case. We evaluate the proposed method on Atari suits with dynamics-irrelevant noises. Our experiments show that exploration with DB bonus outperforms several state-of-the-art exploration methods in noisy environments.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at NeurIPS 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers