06/12/2021

Capturing implicit hierarchical structure in 3D biomedical images with self-supervised hyperbolic representations

Joy Hsu, Jeffrey Gu, Gong Wu, Wah Chiu, Serena Yeung

Keywords: vision, representation learning

Abstract: We consider the task of representation learning for unsupervised segmentation of 3D voxel-grid biomedical images. We show that models that capture implicit hierarchical relationships between subvolumes are better suited for this task. To that end, we consider encoder-decoder architectures with a hyperbolic latent space, to explicitly capture hierarchical relationships present in subvolumes of the data. We propose utilizing a 3D hyperbolic variational autoencoder with a novel gyroplane convolutional layer to map from the embedding space back to 3D images. To capture these relationships, we introduce an essential self-supervised loss---in addition to the standard VAE loss---which infers approximate hierarchies and encourages implicitly related subvolumes to be mapped closer in the embedding space. We present experiments on synthetic datasets along with a dataset from the medical domain to validate our hypothesis.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at NeurIPS 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers