06/12/2021

Learning Policies with Zero or Bounded Constraint Violation for Constrained MDPs

Tao Liu, Ruida Zhou, Dileep Kalathil, Panganamala Kumar, Chao Tian

Keywords: reinforcement learning and planning

Abstract: We address the issue of safety in reinforcement learning. We pose the problem in an episodic framework of a constrained Markov decision process. Existing results have shown that it is possible to achieve a reward regret of $\tilde{\mathcal{O}}(\sqrt{K})$ while allowing an $\tilde{\mathcal{O}}(\sqrt{K})$ constraint violation in $K$ episodes. A critical question that arises is whether it is possible to keep the constraint violation even smaller. We show that when a strictly safe policy is known, then one can confine the system to zero constraint violation with arbitrarily high probability while keeping the reward regret of order $\tilde{\mathcal{O}}(\sqrt{K})$. The algorithm which does so employs the principle of optimistic pessimism in the face of uncertainty to achieve safe exploration. When no strictly safe policy is known, though one is known to exist, then it is possible to restrict the system to bounded constraint violation with arbitrarily high probability. This is shown to be realized by a primal-dual algorithm with an optimistic primal estimate and a pessimistic dual update.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at NeurIPS 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers