19/08/2021

A Sketch-Transformer Network for Face Photo-Sketch Synthesis

Mingrui Zhu, Changcheng Liang, Nannan Wang, Xiaoyu Wang, Zhifeng Li, Xinbo Gao

Keywords: Computer Vision, 2D and 3D Computer Vision, Biometrics, Face and Gesture Recognition

Abstract: We present a face photo-sketch synthesis model, which converts a face photo into an artistic face sketch or recover a photo-realistic facial image from a sketch portrait. Recent progress has been made by convolutional neural networks (CNNs) and generative adversarial networks (GANs), so that promising results can be obtained through real-time end-to-end architectures. However, convolutional architectures tend to focus on local information and neglect long-range spatial dependency, which limits the ability of existing approaches in keeping global structural information. In this paper, we propose a Sketch-Transformer network for face photo-sketch synthesis, which consists of three closely-related modules, including a multi-scale feature and position encoder for patch-level feature and position embedding, a self-attention module for capturing long-range spatial dependency, and a multi-scale spatially-adaptive de-normalization decoder for image reconstruction. Such a design enables the model to generate reasonable detail texture while maintaining global structural information. Extensive experiments show that the proposed method achieves significant improvements over state-of-the-art approaches on both quantitative and qualitative evaluations.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at IJCAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers