19/08/2021

Knowledge-based Residual Learning

Guanjie Zheng, Chang Liu, Hua Wei, Porter Jenkins, Chacha Chen, Tao Wen, Zhenhui Li

Keywords: Data Mining, Classification, Mining Spatial, Temporal Data, Theoretical Foundation of Data Mining

Abstract: Small data has been a barrier for many machine learning tasks, especially when applied in scientific domains. Fortunately, we can utilize domain knowledge to make up the lack of data. Hence, in this paper, we propose a hybrid model KRL that treats domain knowledge model as a weak learner and uses another neural net model to boost it. We prove that KRL is guaranteed to improve over pure domain knowledge model and pure neural net model under certain loss functions. Extensive experiments have shown the superior performance of KRL over baselines. In addition, several case studies have explained how the domain knowledge can assist the prediction.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at IJCAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers

 14:30