18/07/2021

Neuro-algorithmic Policies Enable Fast Combinatorial Generalization

Marin Vlastelica, Michal Rolinek, Georg Martius

Keywords: Reinforcement Learning and Planning

Abstract: Although model-based and model-free approaches to learning the control of systems have achieved impressive results on standard benchmarks, generalization to task variations is still lacking. Recent results suggest that generalization for standard architectures improves only after obtaining exhaustive amounts of data. We give evidence that generalization capabilities are in many cases bottlenecked by the inability to generalize on the combinatorial aspects of the problem. We show that, for a certain subclass of the MDP framework, this can be alleviated by a neuro-algorithmic policy architecture that embeds a time-dependent shortest path solver in a deep neural network. Trained end-to-end via blackbox-differentiation, this method leads to considerable improvement in generalization capabilities in the low-data regime.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICML 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers