19/08/2021

Online Risk-Averse Submodular Maximization

Tasuku Soma, Yuichi Yoshida

Keywords: Machine Learning, Online Learning, Combinatorial Search and Optimisation

Abstract: We present a polynomial-time online algorithm for maximizing the conditional value at risk (CVaR) of a monotone stochastic submodular function. Given T i.i.d. samples from an underlying distribution arriving online, our algorithm produces a sequence of solutions that converges to a (1−1/e)-approximate solution with a convergence rate of O(T −1/4 ) for monotone continuous DR-submodular functions. Compared with previous offline algorithms, which require Ω(T) space, our online algorithm only requires O( √ T) space. We extend our on- line algorithm to portfolio optimization for mono- tone submodular set functions under a matroid constraint. Experiments conducted on real-world datasets demonstrate that our algorithm can rapidly achieve CVaRs that are comparable to those obtained by existing offline algorithms.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at IJCAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers