19/08/2021

Differentially Private Pairwise Learning Revisited

Zhiyu Xue, Shaoyang Yang, Mengdi Huai, Di Wang

Keywords: Machine Learning, Classification, Learning Theory, Security and Privacy

Abstract: Instead of learning with pointwise loss functions, learning with pairwise loss functions (pairwise learning) has received much attention recently as it is more capable of modeling the relative relationship between pairs of samples. However, most of the existing algorithms for pairwise learning fail to take into consideration the privacy issue in their design. To address this issue, previous work studied pairwise learning in the Differential Privacy (DP) model. However, their utilities (population errors) are far from optimal. To address the sub-optimal utility issue, in this paper, we proposed new pure or approximate DP algorithms for pairwise learning. Specifically, under the assumption that the loss functions are Lipschitz, our algorithms could achieve the optimal expected population risk for both strongly convex and general convex cases. We also conduct extensive experiments on real-world datasets to evaluate the proposed algorithms, experimental results support our theoretical analysis and show the priority of our algorithms.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at IJCAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers