19/08/2021

Multi-Hop Fact Checking of Political Claims

Wojciech Ostrowski, Arnav Arora, Pepa Atanasova, Isabelle Augenstein

Keywords: Natural Language Processing, NLP Applications and Tools, Resources and Evaluation, Text Classification

Abstract: Recent work has proposed multi-hop models and datasets for studying complex natural language reasoning. One notable task requiring multi-hop reasoning is fact checking, where a set of connected evidence pieces leads to the final verdict of a claim. However, existing datasets either do not provide annotations for gold evidence pages, or the only dataset which does (FEVER) mostly consists of claims which can be fact-checked with simple reasoning and is constructed artificially. Here, we study more complex claim verification of naturally occurring claims with multiple hops over interconnected evidence chunks. We: 1) construct a small annotated dataset, PolitiHop, of evidence sentences for claim verification; 2) compare it to existing multi-hop datasets; and 3) study how to transfer knowledge from more extensive in- and out-of-domain resources to PolitiHop. We find that the task is complex and achieve the best performance with an architecture that specifically models reasoning over evidence pieces in combination with in-domain transfer learning.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at IJCAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers