22/11/2021

Defensive Tensorization

Adrian Bulat, Jean Kossaifi, Sourav Bhattacharya, Yannis Panagakis, Timothy Hospedales, Georgios Tzimiropoulos, Nicholas Lane, Maja Pantic

Keywords: tensors, tensor networks, tensor decomposition, randomization, adversarial defence, binary networks, network quantization, tensorization

Abstract: We propose defensive tensorization, an adversarial defence technique that leverages a latent high-order factorization of the network. The layers of a network are first expressed as factorized tensor layers. Tensor dropout is then applied in the latent subspace, therefore resulting in dense reconstructed weights, without the sparsity or perturbations typically induced by the randomization. Our approach can be readily integrated with any arbitrary neural architecture and combined with techniques like adversarial training. We empirically demonstrate the effectiveness of our approach on standard image classification benchmarks. We validate the versatility of our approach across domains and low-precision architectures by considering an audio classification task and binary networks. In all cases, we demonstrate improved performance compared to prior works.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at BMVC 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers