22/11/2021

ECINN: Efficient Counterfactuals from Invertible Neural Networks

Frederik Hvilshøj, Alexandros Iosifidis, Ira Assent

Keywords: XAI, Explainability, Counterfactuals, ECINN

Abstract: Counterfactual examples identify how inputs can be altered to change the predicted class of a classifier, thus opening up the black-box nature of, e.g., deep neural networks. We propose a method, ECINN, that utilizes the generative capacities of invertible neural networks for image classification to generate counterfactual examples efficiently. In contrast to competing methods that sometimes need a thousand evaluations or more of the classifier, ECINN has a closed-form expression and generates a counterfactual in the time of only two evaluations. Arguably, the main challenge of generating counterfactual examples is to alter only input features that affect the predicted outcome, i.e., class-dependent features. Our experiments demonstrate how ECINN alters class-dependent image regions to change the perceptual and predicted class, producing more realistically looking counterfactuals three orders of magnitude faster than competing methods.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at BMVC 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers