18/07/2021

BasisDeVAE: Interpretable Simultaneous Dimensionality Reduction and Feature-Level Clustering with Derivative-Based Variational Autoencoders

Dominic Danks, Christopher Yau

Keywords: Probabilistic Methods, Others

Abstract: The Variational Autoencoder (VAE) performs effective nonlinear dimensionality reduction in a variety of problem settings. However, the black-box neural network decoder function typically employed limits the ability of the decoder function to be constrained and interpreted, making the use of VAEs problematic in settings where prior knowledge should be embedded within the decoder. We present DeVAE, a novel VAE-based model with a derivative-based forward mapping, allowing for greater control over decoder behaviour via specification of the decoder function in derivative space. Additionally, we show how DeVAE can be paired with a sparse clustering prior to create BasisDeVAE and perform interpretable simultaneous dimensionality reduction and feature-level clustering. We demonstrate the performance and scalability of the DeVAE and BasisDeVAE models on synthetic and real-world data and present how the derivative-based approach allows for expressive yet interpretable forward models which respect prior knowledge.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICML 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers